Mock Phase Test
ADVANCED PATTERN
SECTION A (Single Option Correct)
1.
|
Domain of definition of f (x) =
|
cos ec−1(2x) + π
|
is
| ||||||||||||||||||||||||||
3
| |||||||||||||||||||||||||||||
⎛
|
−1
|
⎤
|
⎛
|
−∞,
|
1
|
⎤
|
⎛
|
−1 ⎤
|
⎡ 1
|
⎞
| |||||||||||||||||||
(A) ⎜
|
−∞,
|
⎥
|
(B) R
|
(C) ⎜
|
⎥
|
(D) ⎜
|
−∞,
|
⎥
|
∪ ⎢
|
,∞⎟
| |||||||||||||||||||
2
| |||||||||||||||||||||||||||||
⎝
|
3
|
⎦
|
⎝
|
⎦
|
⎝
|
3 ⎦
|
⎣2
|
⎠
| |||||||||||||||||||||
2.
|
Suppose F(x) = sin (3x) + 5,
|
⎡
|
π
|
,
|
π ⎤
|
. If g(x) is the function whose graph is reflection of graph
| |||||||||||||||||||||||
x ∈ ⎢
|
⎥
| ||||||||||||||||||||||||||||
⎣
|
6
|
2 ⎦
| |||||||||||||||||||||||||||
of F(x) with respect to line y = x, then g(x) equals
| |||||||||||||||||||||||||||||
1
|
−
|
⎡
|
π
|
π ⎤
|
1
|
−
|
x ∈[4,6]
| ||||||||||||||||||||||
(A) g(x) =
|
sin 1(x − 5),
|
x ∈ ⎢
|
,
|
⎥
|
(B) g(x) =
|
sin 1(x − 5),
| |||||||||||||||||||||||
3
|
⎣
|
6
|
2 ⎦
|
3
|
1
|
−
|
−
|
⎡
|
π
|
π ⎤
| |||||
(C) g(x) =
|
sin 1(x) − 5, x ∈[4,6]
|
(D)
|
g(x) = sin 1(3x)
|
− 5,
|
x ∈ ⎢
|
,
|
⎥
| |||
3
|
⎣
|
6
|
2 ⎦
|
3.If f(x) = {x}2 + {x} + 1 where {.} represent fractional part of x and g(x) = sin−1x.
Then range of
|
⎛
|
1
|
⎞
|
is
| ||||||||||||||||||||||
g⎜
|
⎟
| |||||||||||||||||||||||||
⎝ f(x) ⎠
| ||||||||||||||||||||||||||
⎡
|
−
|
1
|
1
|
π ⎤
|
⎛
|
−
|
1
|
1
|
π ⎞
|
⎛
|
−
|
1
|
1
|
π ⎤
|
⎡
|
−
|
π
|
π ⎤
| ||||||||
(A) ⎢sin
|
,
|
⎥
|
(B) ⎜ sin
|
,
|
⎟
|
(C) ⎜ sin
|
,
|
⎥
|
(D)
|
⎢
|
,
|
⎥
| ||||||||||||||
⎣
|
3
|
2 ⎦
|
⎝
|
3
|
2 ⎠
|
⎝
|
3
|
2 ⎦
|
⎣
|
2
|
2 ⎦
|
4.F(x) = (x − 1) | x2 − 3x + 2 | +(x + 1) | x2 + 3x + 2 | +(x + 3) | x2 − x −12 | is non-differentiable at
(A) x = 1, −1, −3 (B) 2, −2, 4 (C) x = 1, −1, −3, −2, 2, 4 (D) always differentiable
⎛
|
1
|
+ cos
|
1
|
⎞x
| ||||||||||||
5.
|
lim ⎜ sin
|
⎟ is equal to
| ||||||||||||||
x
|
x
| |||||||||||||||
x→∞ ⎝
|
⎠
| |||||||||||||||
(A) 1
|
(B) 0
|
(C) e
|
(D)
|
1
| ||||||||||||
e
| ||||||||||||||||
sinax − n(ex cos x)
| ||||||||||||||||
6.
|
If lim
|
=
|
1
|
(given) then ‘a’ and ‘b’ are respectively equal to
| ||||||||||||
x sinbx
|
2
| |||||||||||||||
x→0
| ||||||||||||||||
(A) 1, 1
|
(B) 1, 2
|
(C) 2, 1
|
(D) 2, 2
|
7.Let g(x) = ∫−x10 tf′(t)dt for x ≥ −10 where f is an increasing function then
(A)g(x) is an increasing function of x
(B)g(x) is an decreasing function of x
(C)g(x) is an increasing for x > 0 and decreasing for −10 < x < 0
(D)none of these
8.
|
Let f(x) = |sin3x| and g(x) = sin3x, both being defined for x in the interval
|
⎛
|
−
|
π
|
,
|
π ⎞
| |||||||
⎜
|
⎟
| ||||||||||||
⎝
|
2
|
2 ⎠
| |||||||||||
′
|
′
|
(B)
|
′
|
′
|
′
|
′
|
(D)
|
′
|
′
| ||||
(A) f (x) = g (x)
|
f (x) = −g (x)
|
(C) f (x) =| g (x) |
|
g (x) =| f (x) |
|
9.
|
lim
|
1
|
+
|
2
|
+ ....
|
n − 1
|
is equal to
| |||||||||||||||||||||||||
n→∞
|
n
|
n
| ||||||||||||||||||||||||||||||
(A)
|
1
|
(B)
|
1
|
(C)
|
2
| |||||||||||||||||||||||||||
2
|
3
|
3
| ||||||||||||||||||||||||||||||
10.
|
If f(x) =
|
⎛ a + x ⎞a+b+2x
|
then f′(0) equals
| |||||||||||||||||||||||||||||
⎜
|
⎟
| |||||||||||||||||||||||||||||||
⎝ b + x ⎠
| ||||||||||||||||||||||||||||||||
b2 − a2
|
⎛ a ⎞a+b−1
|
⎛
|
a
|
+
|
b2
|
− a2
|
⎞ ⎛ a ⎞a+b
| |||||||||||||||||||||||||
(A)
|
⎜
|
⎟
|
(B) ⎜
|
2log
|
⎟ ⎜
|
⎟
| ||||||||||||||||||||||||||
b2
|
b
|
ab
| ||||||||||||||||||||||||||||||
⎝ b ⎠
|
⎝
|
⎠ ⎝ b ⎠
|
(D) 0
(C) 2log
|
⎛ a ⎞
|
+
|
b2
|
− a2
| ||
⎜
|
⎟
| |||||
⎝ b ⎠
|
ab
|
(D)2 log ⎛ a ⎞
⎜⎟
⎝ b ⎠
SECTION B (Multiple Option Correct)
11.Which of the following is /are true
(A) lim tan x = ∞
|
(B)
|
lim
|
tan x = ∞
|
(C) lim tan x = ∞ (D)
|
lim tan x does not exist
| |||||||
x→π / 2−
|
x→π / 2+
|
x→π / 2
|
x→π / 2
| |||||||||
⎧| x − 3 |
|
x ≥ 1
| |||||||||||
12.
|
The function f(x) =
|
⎪
|
is
| |||||||||
⎨
|
2
|
3x
|
13
| |||||||||
⎪
|
x
|
−
|
+
|
x < 1
| ||||||||
2
| ||||||||||||
⎩ 4
|
4
| |||||||||||
(A) continuous at x = 1
|
(B) differentiable at x = 1
| |||||||||||
(C) continuous at x = 3
|
(D) differentiable at x = 3
|
13.Let h(x) = min{x, x2}, for every and real number of x. Then
(A)h is continuous
(B)h is differentiable for all x
(C)h’(x) = 1 for all x > 1
(D)h is not differentiable at two values of x.
14.If y = |x – 2| - | x + 1|, then
(A) for x <
|
(B) for x > 3 , y = 3
|
(C) for 0 ≤ x ≤ 1 , y =
|
(D) for 1 ≤ x ≤ 2 , y =
|
15.Let f be a function defined from set X to X such that f(f(x)) = x for all x∈ X, then
(A) f is one to one but need not be onto
|
(B) f is onto but need not be one to one
| |||||||||||||||||||
(C) f is both one to one and onto
|
(D) nothing can be said
| |||||||||||||||||||
SECTION C
| ||||||||||||||||||||
16.
|
Which of the following represent the graph of function f(x) =
|
| 1− x | −1| −1
| ||||||||||||||||||
(A)
|
(B)
| |||||||||||||||||||
x
|
x
| |||||||||||||||||||
(C)
|
(D)
| |||||||||||||||||||
x
|
x
| |||||||||||||||||||
.
17.If g(x) = min [{x}, {−x}], where {.} represent fractional part of x, and graph of f(x) is given, then the range of function f(x) + g(x) is
f(x)
1
0
|
1/2
|
1
|
2
|
3
|
⎡
|
3 ⎤
|
⎡ 1
|
⎤
|
⎡
|
3 ⎤
| |||||||
(A)
|
⎢0,
|
⎥
|
(B)
|
⎢
|
,1⎥
|
(C) ⎢1,
|
⎥
|
(D) [0, 2]
| ||||
⎣
|
2⎦
|
⎣ 2
|
⎦
|
⎣
|
2 ⎦
|
18.Number of solutions of x2 + sin2 x = 1 is
(A) 4
|
(B) 0
|
(C) 2
|
(D) 3
| |
19.
|
If the graph of function y = f(x) is given then f(x) may be define as
|
f(x)
|
(A)
|
⎧ | x |
|
| x |≥ 1
| ||
⎨
| ||||
⎩ n | x | 0 <| x |< 1
| ||||
⎧| x |
|
| x |≥ 1
| |||
(C) ⎨⎪ 1
|
0 <| x |< 1
| |||
⎪
| ||||
⎩| x |
|
20. If F(x) has the graph given as follow Which of follow is correct?
(B) ⎧⎨| x | ⎩ x2
⎧ 1
⎪
(D) ⎪⎨| x | ⎪ 2⎪⎩ x2
| x |≥ 1
0 <| x |< 1
| x |≥ 1
0 <| x |< 1
1
−1 1 x
(A)Local maximam at x = x1, x5Local minimum at x = x2, x3, x4
(B)Local max at x = x2, x3 Local min at x = x4
(C)Local max at x = x1, x2, x3 Local min at x = x2 x4, x5
(D)Local max at x = x1, x3 Local min at x = x4
x1 x2 x3 x4 x5
SECTION D
Pessage 1:
A function is called one-one if each element of domain has a distinct image in co-domain or for any two or more than two elements of domain, function doesn’t have same value. Otherwise function will be many-one. Function is called onto if co-domain = Range otherwise into. Function which is both one-one and onto, is called bijective. Inverse is defined only for bijective function.
21.Which of the following function is one-one for ∀ x∈R.
(A) f(x) = x2 + x
|
(B) f(x) = x |x|
|
(C) f(x) = sin
|
πx
| ||||||||||
2
| |||||||||||||
22.
|
Let f: R → Y. f(x) =
|
x2
|
, then set
|
Y for which f(x) is onto
| |||||||||
x2 + 2
| |||||||||||||
⎛
|
1
|
1 ⎞
|
⎡1
|
⎞
| |||||||||
(A) [0, 1)
|
(B)
|
⎜
|
,
|
⎟
|
(C) ⎢
|
,1⎟
|
(D)
| ||||||
⎝
|
3
|
2 ⎠
|
⎣ 3
|
⎠
|
(D) f(x) =[2x]
⎡ 1 ⎞ ⎢ ,1⎟⎣ 2 ⎠
23. Let f: X → Y if f(x) = 2x2 −1 is bijective then possible set of X and Y are
.
⎛ 1
|
⎞
|
(B) X = (0,∞), Y = (0, ∞)
| ||
(A) X = (0,∞), Y = ⎜
|
,∞ ⎟
| |||
2
| ||||
⎝
|
⎠
|
⎛
|
1
|
⎞
| ||||||||||||
(C) X = (−∞,0) Y = ⎜
|
−∞, −
|
⎟
|
(D) X = (−∞,0) Y = (0,∞)
| |||||||||||
2
| ||||||||||||||
⎝
|
⎠
| |||||||||||||
24.
|
Let f: (−∞,1] → (−∞,1] such that f(x) = 2x − x2 then f−1(x) is
| |||||||||||||
(A) −1 −
|
(B) −1 +
|
(C) 1 +
|
(D) 1 −
| |||||||||||
1 − x
|
1 − x
|
1 − x
| ||||||||||||
1 − x
| ||||||||||||||
25.
|
If f: [0, ∞) →[0, ∞) and f(x) =
|
x
|
, then f(x) is
| |||||||||||
1 + x
| ||||||||||||||
(A)
|
(B)
| |||||||||||||
(C) many one & onto
|
(D) many one & into
|
Pessage 2:
Let f(x) is a cube polynomial which has local maximum at x = −1, if f(2) = 18, f(1) = −1 and f′(x) has local minima at x = 0, then
26.The cube polynomial f(x) is
(A)
|
1
|
(x3
|
+ 45x − 54)
|
(B) (x3 − x − 1)
| |||||
8
| |||||||||
(C) x3 + x2 + 9x − 12
|
(D)
|
1
|
(19x3
|
− 57x + 34)
| |||||
4
| |||||||||
27.f(x) is increasing for
⎡
|
1
|
⎞
|
⎡
|
⎤
|
(C) x ∈ R
|
(D) x ∈[1,∞)
| ||
(A) x ∈ ⎢
|
,∞⎟
|
(B) x ∈ ⎣−1,2
|
5
|
⎦
| ||||
⎣
|
3
|
⎠
|
28.f(x) has local minimum at
(A) x = 0
|
(B) x = 1
|
(C) x = 2
|
(D) x = −
|
2
|
Answers:
| |||
1.
|
D
|
2.
|
B
|
3.
|
C
|
4.
|
B
|
5.
|
C
|
6.
|
A
|
7.
|
C
|
8.
|
C
|
9.
|
C
|
10.
|
B
|
11.
|
A, D
|
12.
|
A, B, C
|
13.
|
A, D
|
14.
|
A, C, D
|
15.
|
C
|
16
|
A
|
17
|
A
|
18.
|
C
|
19.
|
C
|
20.
|
D
|
21.
|
B
|
22.
|
C
|
23.
|
A
|
24.
|
D
|
25.
|
B
|
26.
|
D
|
27.
|
D
|
28.
|
B
|
.
Comments
Post a Comment