Mock Phase Test
ADVANCED PATTERN
SECTION A (Single Option Correct)
1.
Domain of definition of f (x) =


cos ec1(2x) π
is



























3

















1









−∞,
1

⎡ 1

(A) 
−∞,


(B) R






(C) 

(D) 
−∞,


∪ 


,









2






3











2
2.
Suppose F(x) = sin (3x) + 5,



π
,
π ⎤
. If g(x) is the function whose graph is reflection of graph
∈ 











6


















of F(x) with respect to line y = x, then g(x) equals


















1
π

π ⎤







1

[4,6]


(A) g(x) =

sin 1(x − 5),
∈ 

,




(B) g(x) =



sin 1(x − 5),
















3

6








3











1


π

π ⎤
(C) g(x) =


sin 1(x) − 5, x [4,6]
(D)
g(x) sin 1(3x)
− 5,
∈ 

,




3





6

3.If f(x) = {x}+ {x} + 1 where {.} represent fractional part of x and g(x) = sin1x.
Then range of
1
is

















g










































⎝ f(x) 


















1
1

π ⎤



1
1

π ⎞
1
1

π ⎤

π

π ⎤
(A) sin

,



(B) ⎜ sin

,
(C) ⎜ sin

,
(D)

,












3






3



3



2

4.F(x) (x − 1) | x− 3x 2 | +(x 1) | x3x 2 | +(x 3) | x− 12 | is non-differentiable at
(A) x = 1, 1, 3 (B) 2, 2, 4 (C) x = 1, 1, 3, 2, 2, 4 (D) always differentiable

1
cos
1
x








5.
lim ⎜ sin




⎟ is equal to




x
x





x→∞ 










(A) 1






(B) 0



(C) e
(D)
1











e


sinax − n(ecos x)





6.
If lim
=
1
(given) then ‘a’ and ‘b’ are respectively equal to













x sinbx

2


x0










(A) 1, 1






(B) 1, 2
(C) 2, 1
(D) 2, 2


7.Let g(x) x10 tf(t)dt for x ≥ −10 where f is an increasing function then
(A)g(x) is an increasing function of x
(B)g(x) is an decreasing function of x
(C)g(x) is an increasing for x > 0 and decreasing for 10 < x < 0
(D)none of these
8.
Let f(x) = |sin3x| and g(x) = sin3x, both being defined for x in the interval
π
,
π ⎞












2



(B)

(D)

(A) f (x) g (x)
f (x) = −g (x)
(C) f (x) =| g (x) |

g (x) =| f (x) |

9.
lim



1
+


2
....
− 1

is equal to



































n→∞








n
n









































(A)
1













(B)
1






(C)
2



2















3







3

10.
If f(x) =
⎛ a+b+2x
then f(0) equals







































⎝ 

















b− a2

⎛ a+b1




a
+
b2
− a2
⎞ ⎛ a+b

(A)











(B) 
2log



⎟ ⎜





b2






b

ab









⎝ 






⎠ ⎝ 
(D) 0
(C) 2log
⎛ 
+
b2
− a2







⎝ 


ab
(D)2 log ⎛ 
⎝ 
SECTION B (Multiple Option Correct)
11.Which of the following is /are true

(A) lim tan x = ∞


(B)
lim
tan x = ∞
(C) lim tan x = ∞ (D)
lim tan x does not exist

x→π / 2




x→π / 2+


x→π / 2
x→π / 2


| x − 3 |

≥ 1


12.
The function f(x) =







is

2

3x

13




x

+
1





2




⎩ 4



4




(A) continuous at x = 1






(B) differentiable at x = 1


(C) continuous at x = 3






(D) differentiable at x = 3

13.Let h(x) = min{x, x2}, for every and real number of x. Then
(A)h is continuous
(B)h is differentiable for all x
(C)h’(x) = 1 for all x > 1
(D)h is not differentiable at two values of x.
14.If y = |x – 2| - | x + 1|, then
(A) for x < -2 , y = 3
(B) for x > 3 , y = 3
(C) for 0 ≤ ≤ 1 , y = -2x + 1
(D) for 1 ≤ ≤ 2 , y = -2x + 1
15.Let f be a function defined from set X to X such that f(f(x)) = x for all x∈ X, then

(A) f is one to one but need not be onto
(B) f is onto but need not be one to one

(C) f is both one to one and onto
(D) nothing can be said







SECTION C
16.
Which of the following represent the graph of function f(x) =





| 1− x | 1| 1







(A)


(B)












x












x

(C)




(D)



































x












x








































.
17.If g(x) = min [{x}, {x}], where {.} represent fractional part of x, and graph of f(x) is given, then the range of function f(x) + g(x) is
f(x)
1
0
1/2
1
2
3


⎡ 1

(A)
0,

(B)


,1
(C) 1,

(D) [0, 2]

2

⎣ 2

18.Number of solutions of x+ sinx = 1 is

(A) 4
(B) 0
(C) 2
(D) 3
19.
If the graph of function y = f(x) is given then f(x) may be define as
f(x)
(A)
⎧ | x |
| x |≥ 1


⎩ n | x | 0 <| x |1

| x |
| x |≥ 1
(C) ⎪ 1
<| x |1






| x |

20. If F(x) has the graph given as follow Which of follow is correct?
(B) | x | ⎩ x2
⎧ 1
(D) | x | ⎪ 2⎩ x2
| x |≥ 1
<| x |1
| x |≥ 1
<| x |1
1
1 1 x
(A)Local maximam at x = x1, x5Local minimum at x = x2, x3, x4
(B)Local max at x = x2, xLocal min at x = x4
(C)Local max at x = x1, x2, xLocal min at x = xx4, x5
(D)Local max at x = x1, xLocal min at x = x4
xxxxx5
SECTION D
Pessage 1:
A function is called one-one if each element of domain has a distinct image in co-domain or for any two or more than two elements of domain, function doesn’t have same value. Otherwise function will be many-one. Function is called onto if co-domain = Range otherwise into. Function which is both one-one and onto, is called bijective. Inverse is defined only for bijective function.
21.Which of the following function is one-one for ∀ xR.

(A) f(x) = x+ x
(B) f(x) = x |x|
(C) f(x) sin
πx

2














22.
Let f: R → Y. f(x) =
x2


then set
Y for which f(x) is onto

x2



1

1



(A) [0, 1)
(B)


,

(C) 

,1
(D)








3

⎣ 3


(D) f(x) =[2x]
⎡ ⎞ ⎢ ,1⎣ 
23. Let f: X → Y if f(x) = 2xis bijective then possible set of X and Y are
.
⎛ 1
(B) (0,), Y (0, )
(A) (0,), Y 

,∞ 
2





1








(C) (−∞,0
−∞



(D) (−∞,0(0,)



2















24.
Let f: (−∞,1→ (−∞,1such that f(x) = 2x − xthen f1(x) is



(A) 


(B) +


(C) +


(D) 








− x
− x
− x



− x
25.
If f: [0, [0, ) and f(x) =

x
then f(x) is






x



(A) one-one & onto






(B) one-one & into



(C) many one & onto






(D) many one & into


Pessage 2:
Let f(x) is a cube polynomial which has local maximum at x = −1, if f(2) = 18, f(1) = −1 and f′(x) has local minima at x = 0, then
26.The cube polynomial f(x) is
(A)
1
(x3
45x − 54)
(B) (x− − 1)
8









(C) xx9x − 12
(D)
1
(19x3
− 57x 34)
4








27.f(x) is increasing for
1


(C) x ∈ R
(D) [1,)


(A) ∈ 

,
(B) ∈ 1,2
5
3






28.f(x) has local minimum at
(A) x = 0
(B) x = 1
(C) x = 2
(D) = −
2
Answers:


1.
D
2.
B
3.
C
4.
B
5.
C
6.
A
7.
C
8.
C
9.
C
10.
B
11.
A, D
12.
A, B, C
13.
A, D
14.
A, C, D
15.
C
16
A
17
A
18.
C
19.
C
20.
D
21.
B
22.
C
23.
A
24.
D
25.
B
26.
D
27.
D
28.
B
.

Comments

Popular posts from this blog

C++ FILE FOR BOARDS CLASS 12

ELECTROMAGNETIC WAVES PROJECT OF CLASS 12

SALT ANALYSIS OF CLASS 11