MATHS DIFF. CAL. (MOCK PH. TEST)








MAINS PATTERN

+
y

2x 


1.
If f ⎜ 2x

,
 y
= xy, then f(x, y) + f (y, x) =
8
8






(A) 1






(B) 0

(C) 2






(D) 3
2.The domain of definition of f(x) = sec-1(cos2x) is

(A) mπ , m I




(B) π/2


(C) π/4





(D) none of these
3.
If f : R → R is
the
function defined by f(x) =
ex2
− ex2
, then


ex2
ex2









(A) f(x)
is an
increasing function

(B) f(x) is a decreasing function

(C) f(x)
is onto



(D) none of these.
4.
The function f(x) =
sin x − cos x

is not defined at x = 0. The value of f(0) so that
− sin x − cos x









f(x) is continuous at x = 0, is





(A) 1





(B) 1


(C) 0





(D) none of these
5.lim π − cosis
+1x→−1

(A)
1



(B)

1






















2



2π



(C)

1



(D) none of these















π



















The function f(x) =
cos x − sin x
is not defined at x =
π


π ⎞
6.



. The value of
⎟ so that











cos2x



4



f(x) is continuous is











(A) 1

(B) 1







(C)






(D)
1







2





































2




















7.The set of all points where the function f (x) = x|x| is differentiable is
(A) (–, )
(B) (–, 0) ∪ (0, )
(C) (0, )
(D) [0, ]
8.Let f: R → R be a function defined by f(x) = max (x, x3). The set of all points where f(x) is not differentiable is

(A) {1, 1}


(B) {1, 0}

(C) {0, 1}


(D) {1, 0, 1}

If sin(3t − 4tand cos1


dy
is equal to
9.
1− t, then





dx

(A)1/2
(C)3/2
10.Which of the following function are bijective:
(A)f : Z → Z defined by y = x + 2
(C)f : Z → R defined by y = x
11.Period of |sin 2x| + |cos 8x| is
(A)π2
(C) 16π
12.The range of the function sin–1(x2 + 2x), x > 0 is


π
,
π ⎤
(A) 




2

(C)
π
,
π ⎤



3


13.If f(x) = 3− 1, then f(r) is equal ton 1
=0
(B)2/5
(D)1/3
(B)f : Z → Z defined by y = 2x
(D)f : R → R defined by y = x + |x|
(B)π8
(D) none of these
(B)
0,
π ⎤


(D) none of these
(A) 3− 1
(B)
3n
− 1
2





(C)
3− 2n − 1
(D) none of these
2






14.If f(x) = sin–1x and g(x) = , the domain of composite function fog(x) is :

(A) [–1, 1]






(B) [–2, 1]

(C) [0, –1]
(D) [0, 1]










− 3
is equal to
15.
If f (9) = 9, f′ (9) = 4, then lim

f
(x)







x9

− 3

(A) 9






(B) 4

(C) 3






(D) 2
16.The function f (x) = 1 + |sin x| is

(A) continuous nowhere
(B) continuous everywhere

(C) differential nowhere
(D) differentiable at x = 0
17.
⎪⎧+1,
≤ 1
f(x) = 


− ax,
1

Value of ‘a’ for which f(x) is continuous, is

(A) 1
(B) 2

(C) –1
(D) –2


⎛ x5x 3

x
















18.
If f (x) = 














, then lim f (x) is







xx
2












x→∞










(A) e4



























(B) e3






(C) e2



























(D) 24





19.
If f(x) =


1






,
then the points of discontinuity of the composite function y =








(− )

f(f(f(x))) are























(A) 2, 3/4

























(B) 1, 2





(C) 2, 3



























(D) 2, 3/2, 4/3






1





1

dy






x



x





20.
sec 1









⎟ + sin
1





⎟ , then the value of

is





















1




1

dx

















(A) 0



























(B) 1






(C) – 1



























(D) – ½




21.
If f(x) = a sin

x

be

x

is differential at x = 0, then































(A) a = 0

























(B) b = 0





(C) a – b = 0
















(D) a + b = 0


If 2+ 2= 2x + y, then the value of

dy






22.


at x = y = 1 is






dx






(A) 0



























(B) – 1





(C) 1



























(D) 2





23.
If f (x) =


1

, x ≠ 0, 1 then the graph of the function y = f{f (f (x))}, x > 1 is

− x

(A) a circle
















(B) an ellipse


(C) a straight line
















(D) a pair of straight line

















π ⎞





π ⎞

⎛ 5
24.
If f(x) = sin2x + sin2
⎜ +


+ cos x cos ⎜ +
⎟ and g 


⎟ = 1, then (g of) (x)




















3 ⎠





3 ⎠

⎝ 4

is equal to
































(A) 2



























(B) 1






(C) 3



























(D) 4





25.Which of the following functions is inverse of itself

(A) f(x) =
1
− x


(B) f(x) = log x

1
x








(C) f(x) = 2x(x - 1)

(D) none of these
26.
Value of f (1) so that function f (x) =
e− e
is continuous at x = 1 is
− 1









(A) 0




(B) e2

(C) e




(D)
e













2


27.
lim
sin xn
(m n) is equal to
(sin x)m

x0


(A) 1
(B) 0

(C) n/m
(D) none of these
28.Let f(x) = sinx + [x](where [.] denotes greatest integer function), 1 ≤ ≤ 3 has
(A)3 points of discontinuity
(B)3 points of non – differentiability
(C)2 points of non – differentiability
(D)1 points of non – differentiability
29.Let f (xxcos⎜ ⎟ , when x ≠ 0 and f(x) = 0 when x = 0. Then f(x) will be

differentiable at x = 0, if





(A) p > 0

(B) p > 1

(C) 0 < p < 1

(D)
1
1






2

30.
The derivative of f(x) = 3

x

at the point x= - 3 is



(A) 3

(B) – 3

(C) 0

(D) does not exist

Answers:
1.B
2A
3D
4B
5B
6. D
7.A
8D
9.D
10A
11A
12. B
13C
14D
15.B
16.B
17A
18A
19.D
20.A
21D
22.B
23C
24B
25A
26C
27.B
28.C
29B
30. B

Comments

Popular posts from this blog

C++ FILE FOR BOARDS CLASS 12

ELECTROMAGNETIC WAVES PROJECT OF CLASS 12

SALT ANALYSIS OF CLASS 11